

Simulation Status for Pixels

Neeti Parashar
Purdue University Calumet
Hammond, Indiana

Where to find info

- ➤ B-tau Web Page (I.Tomalin, F. Palla)
- http://cmsdoc.cern.ch/cms/Physics/btau/management/top/bt au.html
- > Tracker Simulation and Geometry
- Coordinators: Filippo Ambroglini (University of Perugia, Italy)

Neeti Parashar (Purdue University Calumet, USA)

> Tasks:

≻Geometry

> TIB + TOB + TEC+ TID = Filippo

≻SimHit

Barrels + Disks = NP

≻Digi

- > Pixel offline group (chair. V.Chiochia/Uni.Zurich)
 - https://uimon.cern.ch/twiki/bin/view/CMS/PixelOfflineSoftware

Forward Pixel Geometry

- The forward pixels detector consists of two end-caps, with two disks for now
- Each disk contains 24 blades, made of an aluminum base
- Cooling channels of adjacent blades are connected by nipples
- Each panel has a beryllium base plus HDI and three or four plaquettes

Status

- ➤ Detector Description
 Database used for
 simulation (OSCAR),
 reconstruction (ORCA),
 visualization, analysis...
- Files are written in XML
- Design of some of the components is not final

- •Each file describes a subsystem
- •Subsystems are positioned using coordinates of the anchor point

Each subsystem can be visualized and tested independently

Some basic checks

- Position and orientation of active detector areas have been checked for the Tracker Complete!!!
- The pixel positioning comparison between engineers' drawings and simulation has already been done, both for barrel and forward pixel subdetectors
- > The forward pixel plaquette local axis orientation has been revisited and updated

Proposed new coordinate frames for FPIX geometry

Material Budget

- > Extensive work
- No source files found for FPIX
- Mixture program written
- Output implemented in XML
- Produce such a plot for the FPIX

This is the actual integrated radiation length of the whole simulated Tracker as a function of pseudorapidity η

Geometry/TrackerCommonData/data/pixfwdMaterials.xml Geometry/CMSCommonData/data/materials.xml

More FPIX Geometry changes

"Geometry/TrackerSimData/data/trackerProductsCut.xml"

- Energy loss of SimHits of one-pixel events
- Energy loss of SimHits of two-pixel events

Visualization using IGUANA

Tuning Simulation

> Forward Pixel Test at FNAL

- Non-CMSSW software was used to do physics analysis on the beam test
 - Efficiency after radiation
 - Charge cure for one-pixel events and two-pixel events
 - Resolution in x and y direction
- Comparison between Simulation in CMSSW and Beam test showed some differences
- > The following changes in CMSSW were made:
 - Put product cuts for FPIX (missed earlier)
 - Implemented Mis-calibration (by Danek)
 - > Some changes on the charge width in the reconstruction codes for simulation fpixel beam test special case.
 - > No 20 degree rotation.
 - No magnetic field.

GOOD AGREEMENT

Charge of 1 cluster

	Simulation	Test Beam
	(k electrons)	(k electrons)
MPV	22.48	23.18
FWHM	11	10

Charge of 2 clusters

	Simulation	Test Beam
	(k electrons)	(k electrons)
MPV	21.68	21.79
FWHM	13	16

Barrel Test Beam Analysis

Barrel Pixel Beam Test at CERN

- CMSSW to be used for physics analysis on the beam test data
- Comparison between simulation and beam test will be more useful
- ➤ Improve and tune pixel software at simulation, digitization and reconstruction levels

Implementation of E.B. Effect

- Digitization
- > Reconstruction

EB Effect in Digitization

- Barrel Pixel
 - ightharpoonup We know: $\vec{E} \cdot \vec{B} = EB \cos \theta = 0$
 - > So the 2nd-order Lorentz drift is not important
- Forward Pixel
 - ightharpoonup With 20 degree rotation wrt magnetic field, $\vec{E} \cdot \vec{B} = EB \cos(20) \neq 0$
 - > There should be shift in both x and y
 - >~ 2.8 μm in local x direction
 - > ~ +/- 6.9 μ m in local y direction

Shifts in x and y

Mean shift along x ~-2.7µm

Mean shift along y ∼-7.1µm

Correlation of Shift versus cluster size

(X) (Y)

➤ the 2nd order Lorentz drift is more effective
 when cluster size > 1

EB Effect in Reconstruction

Changes in SiPixelRechits Package

- > Add the 2nd order Lorentz drift (E-B)
- > Easily turn on /off via configuration file
- > Add a boolean flag to switch to the EB correction
- Keep the current code unchanged

No effect on Barrel Pixel

ZMinus Side of FPix for Cluster Size =2

- \rightarrow σ_x =5.97 (Before E·B)
- \rightarrow σ_x =5.62 (After E·B)
- > 5.8% improvement

- \succ σ_Y =7.10 (Before E·B)
- \rightarrow σ_Y =6.18 (After E·B)
- > 12.9% improvement

Tracker_FAMOS vs Tracker_OSCAR

Tracker_FAMOS

Tracker_OSCAR

- > Radiography of a quarter of the simulated tracker geometry
- **>**(b): full simulation (OSCAR)

Tracker_CMSSW

- >CMSSW version of FAMOS
- **≻Proper tracker geometry active layers**
- >Provides a more realistic track reconstruction performance simulation

CMSSW RecHits

> Strips

Done and tested, yet to be committed

> Pixels

- Just started
- > Producing a macro file to read rootfile with the old data in FAMOS
- > Use the same macro to read the rootfile with **CMSSW**

Crew

- > Vesna Cuplov Purdue University Calumet
- Xingtao Huang University of Puerto Rico
- ➤ Max Bunce University of Colorado
- Vincenzo Chiochia University of Zurich
- Danek Kotlisnki PSI
- > Riccardo Ranieri CERN
- Patrick Janot CERN

For suggestions/comments/volunteers

neeti@fnal.gov

filippo.ambroglini@cern.ch